miércoles, 31 de diciembre de 2014

LA MEMORIA DE Escherichia coli





                          LA MEMORIA DE Escherichia coli
Escherichia coli es una bacteria de la que no hay que renegar precisamente, ya que vive en nuestro intestino grueso (en realidad casi todos los animales la tienen, sobre todo los mamíferos)  y resulta necesaria para que proceso digestivo funcione correctamente
 Pero, además, este microorganismo proporciona una utilidad extra al ser humano: por sus características, suele usarse en multitud de estudios y experimentos, de manera que ocupa el primer puesto del ránking en ese sentido. 
¿Por qué? ¿Qué características son ésas? E. coli es un procariota: al contrario que los eucariotas, carece de núcleo celular definido, por lo que su ADN flota en el citoplasma concentrándose en una zona llamada nucleoide. Ello facilita la manipulación genética a los científicos y, en ese sentido, hace poco que se consiguió un curioso resultado: grabar recuerdos en su ADN como si éste se tratase de la memoria de una computadora..
La gracia no está tanto en la grabación como en la posibilidad de recuperar esos datos, inducidos mediante sustancias químicas, para posteriormente utilizarlos como diminutos sensores ambientales o referencias de salud. Es algo en lo que se trabajó durante mucho tiempo pero consiguiendo sólo grabar, sin luego poder recuperar; ahora se ha alcanzado el proceso completo, por lo que se abre un nuevo y amplio campo para el estudio.

El mérito corresponde a los expertos del MIT(Massachussets Institute of Technology), que trabajaron con secuencias de ADN de la especie bacteriana llamada Retron msr RNAs, cuya información genética sirve para la producción de enzimas que generan cadenas simples de ADN para insertar en el genoma de la bacteria. Generalmente, las bacterias usan estos filamentos para manipular a su anfitrión.

El logro de los genetistas del MIT consistió en obtener retrons que únicamente producen secuencias de ADN cuando son sometidas a un estímulo inducido, bien un producto químico, bien la luz. Entonces, sus hebras, que vienen a constituir un registro de esa experiencia anómala, se insertan en una parte concreta del genoma. Cuando se quiera recuperar esa información se sabrá exactamente a dónde acudir y además no importará el tiempo que pase porque la secuencia se transmitirá de generación en generación.

O sea, se trata de una grabación guardada en la memoria genética de la bacteria y a la que un científico puede acceder mediante la simple secuenciación de su genoma. Al determinar cuántas de las células dentro de la población contienen la nueva secuencia de ADN, podrá calcular la magnitud y duración de la señal estimulante: cuanto mayor sea la proporción que contiene la secuencia, mayor fue la exposición.
La pregunta consiguiente es ¿para qué sirve esto? Dado que los científicos pueden diseñar las células para responder a una variedad de diferentes estímulos, las aplicaciones potenciales son enormes. El objetivo de los investigadores es utilizar este sistema como un dispositivo de
vigilancia para diferentes tipos de entorno. Por ejemplo, esos microorganismos podrían ser transferidos al océano para medir los niveles de CO2 o otro tipo de contaminación. Asimismo, podrían usarse en medicina para controlar la progresión de un cáncer, al recoger los estímulos liberados por las células enfermas.
Vía: MIT
 @RdzgCarlos








Escherichia coli cultivada en agar Eosina Azul de
 Metileno (EMB)
Aquí se sembró como un arbolito, para festejar la Navidad de 2014
Este blog tiene licencia Creative Commons Internacional 4.0

lunes, 29 de diciembre de 2014

THERE LIFE EVERYWHERE







                                     THERE LIFE EVERYWHERE
Is not proving easy to find alien life on other planets, but at this rate we will end up finding it in ours. The deepest hole that has ever been introduced under the ocean floor -in a mission of the International Ocean Discovery Program, IODP- found bacteria at 2.4 kilometers below the ocean floor with Japan. Down there is not much to do, really, and microorganisms subsist on a meager diet of hydrocarbons and a boring style living close to hibernation. But the fact is they are there, and who knows how below. Already have a name: the intraterrestrials.

This microbiological journey to the center of the Earth is just one of the tracks that recent science is getting on the stubborn resistance of organisms to a level that not long ago were considered incompatible with life. Since the radioactive environment of nuclear power plants to hydrothermal vents of the mid-ocean ridges where the boiling gases emerge from hell, bacteria seem to be everywhere where we were able to watch. The Martians live among us.
The findings of IODP were presented at the fall meeting of the American Geophysical Union which, despite its name, is held from 15 to 29 December in San Francisco, and is the largest World Congress on geoscience and space, this year some 24,000 attendees. Project scientists drill deep belong to the University of Southern California, Caltech, the Jet Propulsion Laboratory of NASA, the Desert Research Institute of Nevada (DRI) and Rensselaer Polytechnic Institute in New York, along with two scientists Japanese institucionaes (CDEX and JAMSTEC).

IODP Expedition 337 took place between July and September 2012, off the coast of Shimokita, Japan. The Japanese ship Chikyu, whose appearance is vaguely similar to an oil rig, introduced a "drill monster" in the words of the researchers IODP- first plunged 1,180 feet to the seabed and then drilled a record 2400 meters under the bottom and through the geological strata. Samples therefore proceed 3.5 miles below the sea surface.
In these inhospitable depths, where there is no single photon of light or an oxygen molecule with a presence short of residual water and very little to be mouthed, scientists have found some unusual, small and spherical bacteria, and they have also been able to grow them in the laboratory and subjected to a series of microbiological experiments.
The area, located in an ocean basin formed by the subduction of the Pacific plate, was chosen because previous studies of seismic type indicated the presence of hard coal strata at depths of about two kilometers. By moving inward in the strata, the temperature grows at a rate of 24 degrees per kilometer, so that bacteria live about 50 degrees, which can be considered comfortable conditions, given the circumstances.
Scientists have found some unusual, small and spherical bacteria, and have also been able to grow them in the laboratory and subjected to a series of microbiological experiments

As the bacteria live in an environment of coal and hydrocarbons, the researchers reasoned that their livelihood could consist of products of the partial degradation of these compounds such as methane and other small molecules of carbon. And they were spot on: under controlled laboratory conditions, the intraterrestresprosperan based on those small carbon compounds (methyl compounds, technically).
Your kitchen -the cell's metabolism is slowed until end next to hibernation, and consume minimum energy necessary to maintain its vital functions. Both your food bland as this metabolism methylated compounds idling are probably adaptations to the extreme depth.

Scientists still have much work ahead, albeit in a rather fascinating character. They know, for example, if there are a variety of intraterrestrials bacteria form a complex ecology in the bowels of the planet, or small spherical microbes that have been detected are solitary inhabitants of that environment. Certainly respond genomic analyzes this issue and shed light on many others.
For example, how the bacteria got there? Due to plate tectonics, the strata that today form coal deposits in the depths were once wetlands area. Perhaps the bacteria already living there in those earlier times, and just have sunk to their environment following the tectonic destination environment. Or maybe the bacteria have been able, somehow, to travel there below. Genomic affinities of intraterrestrials with their distant cousins of the surface indicate the most likely path.
Meanwhile, microbiological Journey to the Center of the Earth should continue until a really deep incompatible with life. If such a thing exists.

JAVIER SAMPEDRO

   @Rdzg_Carlos        With Creative Commons Licence International 4.0

SWARM INTELLIGENCE





                                 SWARM INTELLIGENCE
(SI) is the collective behavior of decentralized, self-organized systems, natural or artificial. The concept is employed in work on artificial intelligence. The expression was introduced by Gerardo Beni and Jing Wang in 1989, in the context of cellular robotic systems.
 SI systems consist typically of a population of simple agents or boids interacting locally with one another and with their environment. The inspiration often comes from nature, especially biological systems. The agents follow very simple rules, and although there is no centralized control structure dictating how individual agents should behave, local, and to a certain degree random, interactions between such agents lead to the emergence of "intelligent" global behavior, unknown to the individual agents. Examples in natural systems of SI include ant colonies, bird flocking, animal herding, bacterial growth, fish schooling and Microbial intelligence. The definition of swarm intelligence is still not quite clear. In principle, it should be a multi-agent system that has self-organized behaviour that shows some intelligent behaviour.

Ant colony optimization

Ant colony optimization (ACO), introduced by Dorigo in his doctoral dissertation, is a class of optimization algorithms modeled on the actions of an ant colony. ACO is a probabilistic technique useful in problems that deal with finding better paths through graphs. Artificial 'ants'—simulation agents—locate optimal solutions by moving through a parameter space representing all possible solutions. Natural ants lay down pheromones directing each other to resources while exploring their environment. The simulated 'ants' similarly record their positions and the quality of their solutions, so that in later simulation iterations more ants locate better solutions.

Artificial bee colony algorithm

Artificial bee colony algorithm (ABC) is a meta-heuristic algorithm introduced by Karaboga in 2005 and simulates the foraging behaviour of honey bees. The ABC algorithm has three phases: employed bee, onlooker bee and scout bee. In the employed bee and the onlooker bee phases, bees exploit the sources by local searches in the neighbourhood of the solutions selected based on deterministic selection in the employed bee phase and the probabilistic selection in the onlooker bee phase. In the scout bee phase which is an analogy of abandoning exhausted food sources in the foraging process, solutions that are not beneficial anymore for search progress are abandoned, and new solutions are inserted instead of them to explore new regions in the search space. The algorithm has a well-balanced exploration and exploitation ability.

Bacterial colony optimization



The algorithm is based on a lifecycle model that simulates some typical behaviors of E. coli bacteria during their whole lifecycle, including chemotaxis, communication, elimination, reproduction, and migration.
Bacteria communication and self-organization in the context of Network theory has been investigated by Eshel Ben-Jacob research group at Tel Aviv University which developed a fractal model of bacterial colony and identified linguistic and social patterns in colony lifecycle.

An agent-based learning framework for modeling microbial growth


The overall idea of this paper is to study the intelligent behavior of microbes in a binary substrate environment with agent-based learning models. Study of microbial growth enables understanding of industrially relevant processes such as fermentation, biodegradation of pollutants, antibody production using hybridoma cells, etc. Artificial intelligence techniques such as genetic algorithms and agent-based learning methodologies have been used to study microbial growth. Specifically, the objective is to (1) qualitatively model the intelligent growth characteristics of the microbes using a minimal set of generic rules as against algebraic/differential mathematical relationships and (2) propose a suitable hypothesis that explains the origin of intelligence through learning in the microbes. A microbial cell has been modeled as a collection of agents characterized by a set of resources and an objective to survive and grow. The actions of the agents are governed by generic rules such as survival, growth and division as is common for any individual in a resource-limited competitive environment. The interaction of the agents with the environment and other fellow agents enables them to “learn” and “adapt” to the changes in the environment and thus defines the dynamics of the system. The origin of intelligence in the microbes has been studied by both a simple learning rule of imitation and rule discovery studies.

The bees algorithm

The bees algorithm in its basic formulation was created by Pham and his co-workers in 2005, and further refined in the following years. Modelled on the foraging behaviour of honey bees, the algorithm combines global explorative search with local exploitative search. A small number of artificial bees (scouts) explores randomly the solution space (environment) for solutions of high fitness (highly profitable food sources), whilst the bulk of the population search (harvest) the neighbourhood of the fittest solutions looking for the fitness optimum. A deterministics recruitment procedure which simulates the waggle dance of biological bees is used to communicate the scouts' findings to the foragers, and distribute the foragers depending on the fitness of the neighbourhoods selected for local search. Once the search in the neighbourhood of a solution stagnates, the local fitness optimum is considered to be found, and the site is abandoned. In summary, the Bees Algorithm searches concurrently the most promising regions of the solution space, whilst continuously sampling

Artificial immune systems

Artificial immune systems (AIS) concerns the usage of abstract structure and function of the immune system to computational systems, and investigating the application of these systems towards solving computational problems from mathematics, engineering, and information technology. AIS is a sub-field of Biologically inspired computing, and natural computation, with interests in Machine Learning and belonging to the broader field of Artificial Intelligence.
Swarm Intelligence-based techniques can be used in a number of applications. The U.S. military is investigating swarm techniques for controlling unmanned vehicles. The European Space Agency is thinking about an orbital swarm for self-assembly and interferometry. NASA is investigating the use of swarm technology for planetary mapping. A 1992 paper by M. Anthony Lewis and George A. Bekey discusses the possibility of using swarm intelligence to control nanobots within the body for the purpose of killing cancer tumors.[41] Conversely al-Rifaie and Aber have used Stochastic Diffusion Search to help locate tumours.[42][43] Swarm intelligence has also been applied for data mining.[44]

Ant-based routing[

The use of Swarm Intelligence in telecommunication networks has also been researched, in the form of ant-based routing. This was pioneered separately by Dorigo et al. and Hewlett Packard in the mid-1990s, with a number of variations since. Basically this uses a probabilistic routing table rewarding/reinforcing the route successfully traversed by each "ant" (a small control packet) which flood the network. Reinforcement of the route in the forwards, reverse direction and both simultaneously have been researched: backwards reinforcement requires a symmetric network and couples the two directions together; forwards reinforcement rewards a route before the outcome is known (but then you pay for the cinema before you know how good the film is). As the system behaves stochastically and is therefore lacking repeatability, there are large hurdles to commercial deployment. Mobile media and new technologies have the potential to change the threshold for collective action due to swarm intelligence

The location of transmission infrastructure for wireless communication networks is an important engineering problem involving competing objectives. A minimal selection of locations (or sites) are required subject to providing adequate area coverage for users. A very different-ant inspired swarm intelligence algorithm,stochastic diffusion search (SDS), has been successfully used to provide a general model for this problem, related to circle packing and set covering. It has been shown that the SDS can be applied to identify suitable solutions even for large problem instances.[45]
Airlines have also used ant-based routing in assigning aircraft arrivals to airport gates. At Southwest Airlines a software program uses swarm theory, or swarm intelligence—the idea that a colony of ants works better than one alone. Each pilot acts like an ant searching for the best airport gate. "The pilot learns from his experience what's the best for him, and it turns out that that's the best solution for the airline," Douglas A. Lawson explains. As a result, the "colony" of pilots always go to gates they can arrive at and depart from quickly. The program can even alert a pilot of plane back-ups before they happen. "We can anticipate that it's going to happen, so we'll have a gate available," Lawson says.

@Rdzg_carlos   With Creative Commons Licence International 4.0

SCIENTIST CAN EXTRACT LARGE QUANTITIES OF HYDROGEN OF TREES





Scientists can remove large quantities of hydrogen 

Virginia Tech researchers have developed a breakthrough in hydrogen energy, something that has always been known to challenge the dominance of fossil fuels. They have developed a process that removes large amounts of hydrogen gas from plants of ecological and renewable way. This is an alternative that could end our dependence on fossil fuels.

YH Percival Zhang is an associate professor at Virginia Tech, along with other researchers professor developed a new method using customized to produce large amounts of hydrogen outside the xylose (sugar plant), a type of sugar that is present enzymes in plants. The new organic production method uses renewable hydrogen near-zero greenhouse gas resources. Previous hydrogen production techniques have generally been costly and create greenhouse gases. This discovery is a feature in an online version of the journal Chemistry   Angewandte Chemie,   International Edition.
The high purity hydrogen under low reaction proceeds between 122 degrees Fahrenheit and normal atmospheric pressure. A group of enzymes that are artificially isolated from various microorganisms that thrive in extreme temperatures can   used as biocatalysts that can thrive and grow around the boiling point of water. To release hydrogen planet, scientists multiple enzymes separated from their native microorganisms to make an enzyme mixture that does not occur in nature. When the enzymes are combined with xylose (plant sugar) and a high volume polyphosphate released hydrogen from xylose. This process turns out to have a production of hydrogen three times other hydrogen producing microorganisms.
The energy stored in xylose divided water molecules, producing high purity hydrogen can be used directly by the fuel cell proton exchange membrane. This reaction occurs at low temperature, power generation of hydrogen is greater than the chemical energy stored in xylose and polyphosphate. This results in an energy efficiency of more than 100 per cent net energy gain. This means that the low temperature waste heat can be used to produce a high quality first hydrogen
Our new process could help end our dependence on fossil forever. Hydrogen is one of the most important biofuel of the future - says Professor Zhang
The Energy Department says US hydrogen fuel has the potential to drastically change our planet and reduce dependence on fossil fuels. Personally, I think the Department of Energy United States has been active in the repression of clean energy alternatives. It's funny how it makes us believe that automakers are trying aggressively to develop hydrogen fuel cells, since this technology has been invented before long. Energy companies have their roots in the suppression of new energy technologies and new energy initiatives. You do not have to go far, just look   General Electric. The discovery of the energy of Nikola Tesla Zero Point JP Morgan forced to burn his laboratory. From there, JP Morgan, in collaboration with Rockefeller, developing your corporation in what is today a monopoly on energy resources.
Unfortunately, the new energy sector is difficult if not impossible to break. Governments, which are controlled by large corporations support traditional energy production through subsidies to fossil fuels. This is not a big surprise, nothing that has the potential to end the energy industry has moved on. This is not a secret anymore, and many people are waking up to the fact that these companies have the ability and resources to suppress discoveries that have the potential to change the planet Earth forever.
Collective Evolution has covered multiple alternative energy initiatives. Below is a video of Dr. Brian O'Leary speaking on free energy devices, also known as energy devices "zero point" is displayed. 
There are many alternatives to generate fuel energy we need ways. However, we are still the subject of brainwashing. The same principal shareholders owning big oil and energy companies also hold our mainstream media. We continue to believe the stories and events manufactured before us without question. But things are changing, more and more people are waking up to what already exists, and our infinite potential to create an experience that is more harmonious with the planet and our natural state is beginning to creep into our reality. Scientists have also developed a reactor plants imitating sunlight turning into fuel. This is another discovery that could be implemented on a massive scale simply using the sun. You can read more about this   you here   .
Another recent discovery of alternative energy are the vortex induced vibrations. The scientists developed a device that can harness energy from slow-moving rivers and ocean currents, which have the capacity to feed the planet. All that is required for the technology to work is a simple form of water or seabed. Technology can generate electricity in water flowing at a rate of less than one knot. The device consists of cylinders which are placed in flow horizontamente water. The cylinders create vortices when water, which allow the cylinders pushed and pulled upward and downward flows. The energy created can be converted to electricity. The cylinders are placed around   one cubic meter below the sea or a river to flow three knots can produce 51 watts. This is more efficient than similar sized turbines or wave generators and the amount of energy produced can greatly increase if the flow is faster or more cylinders are added.
Hydrogen has always had the potential to dramatically change the automotive industry and energy, and reduce our dependence on fossil fuels. It is known that manufacturers and people have been developing cars that run on hydrogen fuel cells for years. Multiple inventors have been able to split water into its   component elements. Stanley Meyer invented what he called a fuel cell water, a process by which electricity passes through water to produce hydrogen.

Chemistry   Angewandte Chemie,   International Edition.

@RdzgCarlos    With Creative Commons Licence Internatioonal 4.0

viernes, 26 de diciembre de 2014

BIOLUMINISCENCIA




                     BIOLUMINISCENCIA

 O la producción de luz de ciertos organismos vivos. El nombre es una palabra híbrida, originada del Griego bios que significa "vivo" y del Latin lumen que significa "luz". Es un fenómeno muy extendido en todos los niveles biológicos, principalmente en las especies marinas, como algunas especies de Medusas, y bacterias que dan un espectáculo muy especial a las olas en la noche.y en los  bosques con la iluminación de miles de luciérnagas

Producción de la bioluminiscencia

La producción de bioluminiscencia en los animales es un proceso químico complejo en el que la oxidación de un sustrato de proteína luciferina es catalizado por la enzima luciferasa. La luciferina acompañada de la enzima luciferasa, la molécula energética ATP y el oxígeno generan la luz bioluminiscente.
La combinación entre la luciferina y el oxígeno provoca la oxidación de la luciferina dando lugar a la oxiluciferina. Esta reacción necesita del ATP para generar moléculas de oxiluciferina en estado excitado.
Posteriormente los átomos de oxiluciferina vuelven a su estado fundamental generando luz visible. Esta reacción se produciría en todos los casos sin la necesidad de la presencia de la luciferasa, sin embargo en el mundo animal la bioluminiscencia debe producirse en cuestión de segundos ya que en la mayoría de casos se usa como sistema de defensa.
Por esa razón se requiere la enzima luciferasa que hace que la reacción sea mucho más rápida.

Formas de brillar

Brillo de una luciérnaga

Las luciérnagas sintetizan la sustancia denominada luciferina que es oxidada con la ayuda de la enzima, la luciferasa. Esta reacción es altamente eficaz, prácticamente sin perdida de energía.

Brillo de una medusa

Las medusas fluorescentes son probablemente la suma de la sofisticación en bioluminiscencia. Poseen una proteína capaz de recibir luz de alta energía (normalmente en el rango del UV) denominada GFP (Green Fluorescence Protein) que emite fluourescencia en el rango de la luz verde.
Las medusas no son los únicos seres marinos bioluminscentes, se cree que más del 90% de las especies animales de la porción media y abisal del océano emiten algún tipo de bioluminiscencia.

Tipos de bioluminiscencia

Bioluminiscencia intracelular

La bioluminiscencia intracelular es generada por células especializadas del propio cuerpo de algunas especies pluricelulares o unicelulares (como dinoflagelados) y cuya luz se emite al exterior a través de la piel o se intensifica mediante lentes y materiales reflectantes como los cristales de urato de las luciérnagas o las placas de guanina de ciertos peces.
Este tipo de luminiscencia es propia de muchas especies de calamar y de dinoflagelados, en especial del género Protoperidinium.

Bioluminiscencia extracelular

La bioluminiscencia extracelular se da a partir de la reacción entre la luciferina y la luciferasa fuera del organismo. Una vez sintetizados, ambos componentes se almacenan en glándulas diferentes en la piel o bajo esta.
La expulsión y consecuente mezcla de ambos reactivos en el exterior producen nubes luminosas. Este tipo de luminiscencia es común a bastantes crustáceos y algunos cefalópodos abisales.

Simbiosis con bacterias luminiscentes

Este fenómeno se conoce sólo en animales marinos tales como los celentéreos, gusanos, moluscos, equinodermos y peces. Parece ser el fenómeno de luminiscencia de origen biológico más extendido en el reino animal. En diversos lugares del cuerpo los animales disponen de pequeñas vejigas, comúnmente llamadas fotóforos, donde guardan  bacterias luminiscentes.

Algunas especies producen luz continua cuya intensidad puede ser neutralizada o modulada mediante diversas estructuras especializadas. Normalmente los órganos luminosos están conectados al sistema nervioso, lo que permite al animal controlar la emisión lumínica a voluntad.

Función

Existen distintas hipótesis con respecto, a cual es la función de la bioluminiscencia, muchas de ellas aún por confirmar. Fundamentalmente se pueden agrupar en funciones de alimentación, defensa y reproducción.
Algunos peces, calamares e insectos, utilizan su capacidad bioluminiscente como carnada con el propósito de atraer a sus presas y obtener su alimento. Sin embargo, otros como en el caso de la familia de peces Malacosteidae, los géneros, (Malacostus, Aristostomias y Pachystomias), poseen fotóforos especiales que emiten luz roja. Los utilizan como linterna para alumbrar sus presas en las profundidades marinas. Por otro lado, para escapar de los depredadores, ciertos peces, calamares y camarones, utilizan su propia luz, como trampa para confundir al atacante en horas diurnas, camuflándose con el brillo solar y difuminando así su propia sombra.
Por último, en su función de reproducción, el ejemplo más conocido es el de las luciérnagas, Lampyris nocticula, que intercambian destellos entre machos y hembras con el fin de facilitar su reconocimiento y atraer la pareja para el apareamiento. De este modo evitan la confusión entre las distintas especies, pues emiten sus luces en longitudes de onda y frecuencias diferentes. Sin embargo, esta “llamada amorosa” ha sido adoptada por especies del género Photuris, que depreda los machos que atrae de otras especies de luciérnagas. En algunos animales marinos, como los poliquetos, los machos atraen a las hembras centelleando. Como resultado se forman enjambres enormes para el acoplamiento. En los representantes del reino Fungi, ciertos hongos, como la Armillaria mellea, emiten luz intensa con el fin de atraer insectos que ayuden a la dispersión de sus esporas.
Existen viales de bacterias luminiscentes como Vibrio fischeri liofilizadas(Biofix-Lumi)  (NNRlB-11177), para el análisis de aguas residuales,extractos acuosos, lexiviados, agua dulce subterránea, etc Según Norma DIN EN ISO 11348.
Si hacemos uso de la Ingeniería genética, se pueden aislar e implantar los genes responsables de la Bioluminiscencia en el genoma de plantas, esto abre una amplia gama de posibilidades para los ambientalistas, ya que se podrían producir árboles luminiscentes para la iluminación de la ciudad sin el gasto de energía.
Existen muchas aplicaciones que apenas estamos dilucidando y que definitivamente van a cambiar, nuestra forma de vida 

Yen-Hsun, dijo en una entrevista con Chemistry World: “En el futuro, los bioLED podrían ser utilizados para que los árboles a las orillas de las carreteras iluminen la noche. Esto ahorrará energía y absorberá el CO2, mientras que la luminiscencia del bioLED hará que el cloroplasto lleve a cabo la fotosíntesis”.


Carlos Rodriguez G

@Rdzg_Carlos Este blog tiene una licencia Creative Commons-sin derivar. 4.0 Internacional